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1, INTRODUCTION

The theoretical and practical aspects of Chebyshev approximation
problems where the unknown parameters are required to satisfy additional
inequality or equality constraints have received a great deal of attention in
recent years. Surveys of the work of various authors on this class of problem
have been given by Taylor [10] and Lewis [9]. Characterization theorems for
fairly general linear problems of this type are given by Laurent [8] and
Andreassen [1], while certain classes of nonlinear problems have been treated
by Hoffman [6, 7] and Gislason and Loeb [5].

It is the purpose of this paper to investigate the extent to which the charac
terization results for the general linear case can be extended to the nonlinear
case, while imposing a minimum of restrictions on the problem. Necessary
conditions and sufficient conditions of "zero in the convex hull" type are
presented for local best approximations, as defined below. The theorems
also generalize similar results for the nonlinear problem without constraints
(see, for example, [11]). We remark that, although the results are fomulated
for approximation in a finite interval [a, b] of the single real variable x,
no use is made of this restriction in the proofs, and hence the theorems are
valid for multivariate approximation.

Let f, 4>(-, ex) E C[a, b] be given functions, where ex = (CXl' CX2 , ... , cxnY,
and let Q C IRn be given. Then the basic approximation problem with which
we will be concerned can be stated: find ex E Q to minimize

11 r(ex)11 = max I r(x, ex) [ ,
xE[a,b]

where r(-, ex) = f - 4>(-, ex) and 4> is nonlinear in the components of ex.
(For convenience we will often suppress the parameter ex in r, 4> and similar
expressions.)
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D is said to be the set of feasible approximations. We will assume that Q
is nonempty and if there exists at least one at E D which satisfies

II r(at) II ~ II r(~) II (1.1)

for all ~ E D, such an at is a (global) best approximation. Because of the non
linearity of 1> as a function of a, it is possible for vectors a to exist which
satisfy (1.1) for all ~ E D n N(a), where N(a) is some open neighborhood of a.
In this case at satisfies the usual (theoretical) definition of a local best approxi
mation.

In the next two sections, we give necessary conditions for a to be a local
best approximation when D is defined by a set of inequality or a set ofequality
constraints. In addition, we examine the extent to which these conditions
might also be sufficient, and show that sufficiency results of this form can
be obtained provided that we permit a weakening of the definition of a local
minimum. This is made precise by the next two definitions.

DEFINITION 1. C is an open cone of descent directions from at E D if C
is an open cone in IRk, k ~ n, and there exists a vector-valued function
tjJ = (01 ,..., 0nY, defined and continuously differentiable on some open
neighborhood N of the origin in IRk, with 0i+n-k(~) = f3i' i = 1,2,... , k
(after rearranging the components if necessary), such that

(i) tjJ(O) = 0,

(ii) {tjJ(~) I ~ E N} n (D - a) is open relative to D - a,

(iii) II r(a + tjJ(h~»11 < II r(a)ll, a + tjJ(h~) ED,

for ~ E C and h > °sufficiently small.

DEFINITION 2. at E D is said to be a weak local best approximation if
there exists no open cone of descent directions from at.

Remark 1. In the inequality constraint case we will restrict D to be convex
with a nonempty interior, and then in Definition 1 k = n; i.e., C is an open
cone in IRn. In the equality constraint case, however, an element of D win
have <n degrees of freedom, hence the necessity of using a mapping from
a cone in a lower-dimensional space.

Remark 2. In certain special cases (for example, when 1> is a rational
function), it is possible to show that at is a local best approximation if and
only if at is a weak local best approximation.

The assumption that (8/8cxi) 1>, i = 1,2,... , n, exist and are continuous as
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functions of x is central to the rest of this paper. We introduce the following
notation:

vo(x, a) = [(O/OCXI) cP(x, a), ... , (o/OCXn) cP(x, a)]T,

Bo(a) = {x I x E [a, b], I rex, a)1 = II r(a)II},

and So(a) is a matrix each row of which is vl(x, a) for some x E Bo(a).
If Xi E Bo , then 0; = sign(r(xi , a)), otherwise 0i = 1, and if Xl"'" Xt
are the points of Bo present in So , then D = diag{OI ,... , Ot}.

2. THE INEQUALITY CONSTRAINT PROBLEM

Let pj ,j = 1,2,... , m, be given functions of x and a, and let Q be defined by

Q = {a Ip;(x, a) ~ O,j = 1,2,... , m, x E [a, b]}.

We assume that (%cx;) p;(-, a) exists and is continuous as a function of
x for all a E Q, i = 1,2,... , n,j = 1,2,... , m.

In addition to the notation introduced earlier, we will in this section
require the following. For a given a, define Vj(x, a) to be an n-vector with
ith component (%cx;) Pj(x, a),

B;(a) = {x I x E [a, b], Pj(x, a) = O},

SiCa) to be a matrix each row of which is vl(x, a) for some x E Bj(a),
j = 1,2,... , m, and

[

So(a)]
Sea) = : .

Sm(a)

THEOREM 1. If a is a local best approximation, and if there exists an open
neighborhood of a where (02/ocx; OCXk) 4>, (02/0cx; OCXk) pj, i, k = 1,2,... , n,
j = 1,2,... , m, exist and are uniformly bounded as functions of x, then there
exists a set of q ~ n + 1 points Xl'"'' X q E U:o B j and a nontrivial vector A
such that

'J.,rs = 0, i = 1,2,... , q.

Proof Suppose a is a local best approximation, but no such set of points
Xl'"'' xq and no such vector A exist.

Let Si be the matrix with a row vl(x) corresponding to every point of B; .
It follows from the theorem of Caratheodory [2, p. 17] that there does not
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exist any vector fJ. ;;:, 0 with only a finite number of positive components
such that

L fLi = I,

where 15 extends D in an obvious way.
Because of the continuity of Vj the subset of ~n consisting of the rows of

15So , Sl ,..., Sm is compact. Hence by a theorem on linear inequalities
[2, p. 19], the nonexistence of fJ. implies the existence of a y satisfying

15SoY > 0,

S;y > 0, j = 1,2,... , m.

(2.1)

(2.2)

Equation (2.1) may be used to show that

II r(a. + hy)11 < II r(a.)11

for h > 0 and sufficiently small. The proof is given in [3].
Because of the existence and uniform boundedness of the second order

partial derivatives in an open neighborhood of a., we can for sufficiently
small h write

pix, a. + hy) = pix, a.) + hvl(x, a.) y + O(h2
),

where the bound on the O(h2)-term is independent of x. Using this and the
fact that vl(x, a.) y is bounded on [a, b] and bounded away from zero for
x E B j , it is easy to show that Pj(x, a. + hy) ;;:, 0 for all x E [a, b] if h > 0
is sufficiently small.

We now have shown that for h > 0 sufficiently small, a. + hy is feasible
and better than a.. Since a. is a local best approximation, this is a contra
diction.

Remark. To prove that a. + hy is feasible and better than a., we only
needed to know that (2.1) and (2.2) held. Since Bj is compact and Vj is con
tinuous, we can easily show that (2.1) and (2.2) hold in an open neighborhood
of y. But then we have an open cone of descent directions from a. (with
k = n); i.e., Theorem 1 is also valid for weak local best approximations.

THEOREM 2. Let a. E Q be given, and assume

(i) Q is convex,

(ii) Q has a nonempty interior.
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Then ex E Q is a weak local best approximation if there exists a set ofq ~ n + 1
points Xl"'" X Q E U;:'o Bi and a nontrivial vector A such that

ATS = 0, i = 1,2,... , q,

with no row ofS identically zero.

Proof Assume Xl"'" x q and A exist, but ex is not a weak local best
approximation. Then there exists an open cone C of descent directions from ex.
As mentioned earlier, because of (i) and (ii) it is possible to prove that C
is an open cone in [Rn. Hence we have that if y E C then

ex + hy E Q,

II r(ex + hy)li < II r(ex)1I

(2.3)

(2.4)

if h > °is sufficiently small.
Since ep, Pi , j = 1,2'00" m, are differentiable with respect to the com

ponents of ex, we get

n

rex, a + hy) = rex, ex) - h L Yi(8j8IXi) ep(x, ex) + hO(h),
i~l

n

pix, a + hy) = pix, ex) + h L Yi(8j81X;) pix, ex) + hO(h).
i~l

Equations (2.3), (2.4), and the definition of D and Si give us

DSoY ~ 0,

SjY ~ 0, j = 1,2,... , m.

(2.5)

(2.6)

Obviously these inequalities hold for all vectors y E C. Since C is an open cone
in [Rn, there exists aT> °such that y + t5 E C for all t E [0, 71 and all
unit vectors 5. Since no row of S is identically zero, it follows that for all
yE C we have

DSoY > 0

SjY > 0, j = 1,2'00" m.

(2.7)

(2.8)

This contradicts the existence of the nontrivial vector A.

Remark 1. We see that to prove (2.5) and (2.6) we only needed the
existence of one descent direction, i.e., y. To get (2.7) and (2.8), however, we
needed an open cone of descent directions. It is difficult to see how the present
proof can be modified to avoid this.
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Remark 2. It is clearly possible that the constraint functions Pi are given
in such a way that there exists a functional relationship between the
coordinates of Q. This means that Q has an empty interior relative to IRn

which is equivalent to the existence of a linear relationship between the
coordinates of Q. (This is a simple corollary of [4, Theorem 4, p. 16].)
Hence condition (ii) of Theorem 2 is necessary to ensure that the approxi
mation problem really is n-dimensional.

In practice a verification of (ii) will be difficult, but the following (linear)
example shows that (ii) is essential for Theorem 2. (See also [8].)

EXAMPLE. lex) = x2, ef>(x, a) = CXl + CX2X, Pl(X, a) = CXl + (CX2 - 1) x,
P2(X, a) = -CXl + cx2(x - 1) + 1 + x, X E [0,1].

a = [~] is feasible and gives

DSo = [-1 0],

Le., 'AT = [0 I 1] satisfies 'ATS = 0, AiBi ~ 0, i = 1,2,3.
Pl(l, a) ~ 0 and P2(O, a) ~ 0 imply CXl + CX2 = 1, hence Q = {a I CXl +

CX2 = 1, CXl E [0, 2]}; i.e., Q has no interior points relative to 1R2, and we cannot
apply Theorem 1.

Using ifil(X) = -x it is easily seen that C = {x I x > O} is an open cone
of descent directions from m.

3. THE EQUALITY CONSTRAINT PROBLEM

We will now assume that Pi is independent of x and defined on some open
subset E C IRn , and in addition that Pi E Cl(E), j = 1, 2, ... , m.

We define Q by

Q = {a Ip;(a) = 0, j = 1,2,..., m},

and the matrix A(a) as the matrix with (j, i)-element

j = 1,2,..., m, i = 1,2,... , n.

In addition we will use the following notation.
If a E IRn, then &. = [cxm+! ,... , cxnY, and if r C IRn, then r = {y lyE r}.
Now let a E Q be fixed and assume A(a) has rank m. Then we can, after

renaming the components of a if necessary, write A = [B 0], where B is
m x m and nonsingular. Since Pi E Cl(E), j = 1, 2,..., m, then there exists
a neighborhood NeE of a where B is nonsingular. The implicit function
theorem gives us that there exists an open neighborhood MeN of a and
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functions ,pl,... ,,pm E CI(M) such that CXj = ,pia), j = 1,2,... , m, and

\jJ(~) = (,pl(~)"'" ,pm(~), ~TY E Q for ~ E M.

Let ¢ be the function defined by

¢(-, ~) = 4>(-, \jJ(~». (3.1)

Consider, now, the unconstrained approximation problem: find ~ E M
to minimize

II! - e,b(~)II. (3.2)

The following lemma shows that (3.2) and the original constrained problem
are, in a certain sense, equivalent.

(3.3)j = 1,2,... , n - m.

LEMMA 1. a is a weak local best approximation to the problem defined
by (3.2) if and only if a is a weak local best approximation to the original
problem.

Proof Suppose a is not a weak local best approximation to the original
problem. Then there exists an open cone C of descent directions from a.
Since the mapping from IRk into IRn of C must give a set whose intersection
with Q - a is open relative to Q - a, and M is an open subset of fl, the
mapping must be of the form T = (TI ,..., T n)T, where T n-k+;(~) = f3i ,
i = 1, 2,... , k, and k ~ n - m. But ,pI'"'' ,pm defined by the implicit function
theorem are unique, hence, with a suitable definition of ,pi outside M, we
have that T - \jJ; i.e., C is open relative to IR n - m and is an open cone of
descent directions from a for (3.2).

The proof of the second half of the lemma is similar and will not be given
here.

Since (3.2) is a special case of the inequality constraint problem, we will
use Theorems 1 and 2 to characterize a solution to (3.2) and hence, by
Lemma I, a solution to the equality constraint problem.

Differentiating (3.1) we get

~ e,b = I 04> 8,pk +~ ,
of3j k~l OCXk of3j Bcxm+j

Also, since

we get

o = f iOPJ O,pk + op; ,
k~l OCXk OPl Bcxm +!

j = 1,2,... , m, 1= 1,2,... , n - m. (3.4)
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Let T, U, V, W be the matrices defined by

t ij = (8¢j8fJj)(Xi , ii),

Uij = (81Jj8rxj)(x j , IX),

Vij = (81Jj8rxm+j)(Xi , IX),

Wij = (Ehpij8fJj)(a.),

Now (3.3) and (3.4) give

m

tij = L UikWkj + Vij ,
k~l

m°= L bikWkj + Cij ,
k~l

or

i = 1,2, , q, j = 1,2, , n - m,

i = 1,2, , q, j = 1,2, , m,

i=I,2, ,q, j=I,2, ,n-m,

i = 1,2, , m, j = 1,2, , n - m.

i = 1,2,... , q, j = 1,2,... , n - m,

i = 1, 2'00" m,l = 1, 2, ... , n - m,

T= UW+ V, 0= BW+ C.

Since B is nonsingular we can eliminate W to get

T = V - UB-IC.

Suppose now that there exists a nontrivial y such that

(3.5)

Using (3.5) we get

y/li ~ 0, i = 1,2,..., q. (3.6)

and defining lJ. by

we get

Since [U V] = So and [B C] = A, we can define AT = [yT lJ.T] to get

i = 1,2,... , q. (3.7)

Clearly we also have that (3.7) implies (3.6). Since T is the matrix So obtained
by applying Theorem 1 or 2 to the problem (3.2), we have proved the
following two theorems.



NONLINEAR APPROXIMATION 249

THEOREM 3. Let II be a local best approximation to the equality constraint
problem, and assume that

(i) A(ll) has full rank,

(ii) there exists an open neighborhood CE of II where (02j8rxi Orxk) ef>,
(82Jorxi Orxk) Pi' i, k = 1,2,... , n, j = 1,2,... , m, exist and are uniformly
bounded as functions of x.

Then there exist a set of q :;::;; n + I - m points Xl"'" X q E Bo and a non
trivial vector A such that

i = 1,2,... , q.

THEOREM 4. II E Q is a weak local best approximation to the equality
constraint problem if there exist a set of q :;::;; n + 1 - m points Xl"'" X q E Bo
and a nontrivial vector A such that

A(ll) has full rank,

i= 1, 2, ... , q,

v - UB-IC has no row identically zero.

Remark. Using the same method we can prove theorems similar to
Theorems 3 and 4 when both equality and inequality constraints are present.
The details are given in [1].
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